

	Page 1 of 24	Report No. 190226174GZU-004
	TEST REPORT IEC 61727 2 nd ed otovoltaic (PV) syst eristics of the Utilit	tems –
		-
Report Reference No.	190226174GZU-004	
Tested by (name + signature)	Sunny Lin	Sung Lin Dason Tu
	Engineer	4
Approved by (name + signature):	Jason Fu	$\neg \mp$
	Technical Team Leader	Jason Tu
Date of issue	03 Jun 2019	
Number of pages	24 pages	
Testing Laboratory	Intertek Testing Services	Shenzhen Ltd. Guangzhou Branch
Address:		ong Software Science Park, Caipin Road, GETDD, Guangzhou, China
Testing location / procedure	CBTL SMT	□ TMP □ TL ⊠
Testing location / address	Same as above	
Applicant's name	EVOLVE ENERGY GROU	JP CO., LIMITED
Address:	RM 702,7/F FU FAI COM HK	M CTR 27 HILLIER ST SHEUNG WAN,
Test specification:		
Standard	IFC 61727 2 nd ed 2004-12	2
Test procedure		-
Non-standard test method		
Test Report Form No		
TRRF Originator		
Master TRRF		
Copyright © 2010 Intertek Germany		
This publication may be reproduced in whole or	in part for non-commercial purpos rtek takes no responsibility for an	d will not assume liability for damages resulting from
Test item description	Solar inverter	
Trade Mark:	EVIVO	
Manufacturer	Same as applicant	
Model/Type reference:		4000TL3P, EVVO 4800TL3P, EVVO L3P, EVVO 8000TL3P, EVVO 10000TL3P,

		ge 2 of 24		Report No.	1902261740	GZU-004
Ratings	MODEL	EVVO 3000TL3P	EVVO 4000TL3P	EVVO 4800TL3P	EVVO 5000TL3P	EVVO 6000TL3F
	Max PV voltage			1000Vdc		
	MPPT Voltage range			160-960Vdc		
	Max. input current			11/11A		
	PV lsc			14/14A		
	Max power(VA)	3300	4400	5000	5500	6600
	Max output current	3×4.8 A	3×6.4 A	3×8.0A	3×8.0 A	3×9.6 A
	Output voltage		3W/N/	PE 230Vac/4	00Vac	
	Nominal Frequency	50 Hz				
	Power Factor		0.8 Lea	ading to 0.8 L	agging	
	Ambient Temperature			-25℃ - +60℃		
	Protection Degree	on IP65				
	Protection Class			Class I		

intertek	
Total Quality Assured	

uality. Assured.	Page	3 of 24	Report No. 1902	No. 190226174GZU-001	
	MODEL	EVVO 8000TL3P	EVVO 10000TL3P	EVVO 12000TL3P	
	Max PV voltage		1000Vdc		
	MPPT Voltage range		160-960Vdc		
	Max. input current		11/11A		
	PV lsc		14/14A		
	Max power(VA)	8800	11000	13200	
	Max output current	3×12.8 A	3×15.9 A	3×19.1 A	
	Output voltage	3W/	N/PE 230Vac/400V	ac	
	Nominal Frequency	50 Hz			
	Power Factor	-25°C - +60°C			
	Ambient Temperature				
	Protection Degree				
	Protection Class	Class I			
	Software Version	V 1.00			

TRF No. IEC61727_2nd_a

	Page 4 of 24	Report No. 190226174GZU-0
opy of marking plate:		
EVIV	O Solar Grid-	tied Inverter
Model No:	EVV	O 12000TL3P
Max.DC Inpu Operating Mi	it Voltage PPT Voltage Range	1000V 160~960V
Max. Input C	urrent	2x11A
Nominal Gri	d Voltage 3/N/P	E,230/400V~
	Current	
	d Frequency	
Nominal Ou	tput Power	12000W
Max.Output	Power	13200VA
Power Facto	or >0.99(adju	ustable+/-0.8)
Ingress Pro	tection	IP65
	emperature Range	
	Class	Class I
	enzhen China	
	EVOLVE ENERGY GROUP 02, 7/F FU FAI COMM CTR	
Global Head Q 371 Sidco Indu Chennai 6000	ustrial Estate	
VDE0126-1-1, IEC62116,RD	VDE-AR-N4105,G99,IEC61 1699,UTE C15-712-1,AS477	727.
II 🔼	CE AO. /	

Note:

- 1. The above markings are the minimum requirements required by the safety standard. For the final production samples, the additional markings which do not give rise to misunderstanding may be added.
- 2. Label is attached on the side surface of enclosure and visible after installation
- 3. The other model labels are identical with label above, except the model name and rating.

Total Quality. Assured.

Page 5 of 24

Report No. 190226174GZU-001

Summary of testing:

4.4 DC injection

4.6 Harmonic and waveform distortion

4.7 Power factor

5.2.1 Over/under voltage

5.2.2 Over/under frequency

Test item particulars:	
Classification of installation and use	Fixed, IP 65
Supply Connection	Permanent connection
:	
Possible test case verdicts:	
- test case does not apply to the test object:	N/A
- test object does meet the requirement:	P(Pass)
- test object does not meet the requirement:	F(Fail)
Testing	
Date of receipt of test item:	27 Feb., 2019
Date (s) of performance of tests:	27 Feb 2019– 25 May, 2019

Code: IEC61727_a / Effective Date: 18 Nov 2011

Page 6 of 24

General remarks:

This report is not valid as a CB Test Report

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

When determining for test conclusion, measurement uncertainty of tests has been considered. This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

The test report only allows to be revised only within the report defined retention period unless standard or regulation was withdrawn or invalid.

"(see Enclosure #)" refers to additional information appended to the report. "(see appended table)" refers to a table appended to the report.

Throughout this report a point is used as the decimal separator.

This report is based on original report No. 170707054GZU-001, dated 11 Jul 2017 and Revision 1:25 Sep 2018 to apply for co-certificate.

Only applicant and model name are changed.

Intertek

Page 7 of 24

General product information:

Product covered by this report is grid-connected PV inverter for indoor or outdoor installation. The connection to the DC input and AC output are through terminal. The structure of the unit complied with the IP 65 requirement.

The inverters intended to operate at ambient temperature -25° C - $+60^{\circ}$ C, which will be specified in the user manual, however, the inverters will output full power when operated at 45° C, if operated at high than 45° C temperature, the output power would be derated

Model difference:

All models have identical mechanical and electrical construction except some parameter of the software architecture in order to control the max output power. The detailed difference as following:

Model	EVVO 8000TL3P, EVVO 10000TL3P, EVVO 12000TL3P		EVVO 3000TL3P, EVVO 4000TL3P, EVVO 4800TL3P, EVVO 5000TL3P, EVVO 6000TL3P	
Componets	Specification Numbers		Specification	Numbers
Inverter Chock	k NPS226060*2+NPF226060*1 2.0Ф*2P*42Ts L=0.73mH		NPS226060*2 2.2Ф*1P*67Ts L=1.24mH	3
Bus capacitor	Bus capacitor 75µF/600V 4		75µF/600V	2

Other than special notice, the model EVVO 12000TL3P is as the representative test models in this report

4	Othity compatibility		Г	
4.1	Rated Utility voltage (V):		Р	
	Nature of supply:		Р	
	Rated frequency (Hz):	50Hz	Р	
	Rated power (W):	See markings	Р	
	Rated current (A):	See markings	Р	
4.1	Voltage, current and frequency		Р	
4.1	Utility-interconnected Voltage range (V)		Р	
4.3	Flicker		Р	
	The operation of the PV system should not cause voltage flicker in excess of limits stated in the relevant sections of IEC61000-3-3 for systems rated less than 16A		Ρ	
	The operation of the PV system should not cause voltage flicker in excess of limits stated in the relevant sections of IEC61000-3-5 for systems rated more than 16A		Ρ	
4.4	DC injection			
	The PV system shall not inject DC current greater than 1% of the rated inverter output current, into the utility AC interface under any operating condition	(see appended table)	Р	
4.5	Normal frequency operating range			
	The PV system shall operate in synchronism with the utility system, and within the frequency trip limits defined in §5.2.2	(see appended table)	Р	
4.6	Harmonics and wave form distortion		Р	
	The PV system output should have low current- distortion level to ensure that no adverse effects are caused to other equipment connected to the utility system	(see appended table)	Ρ	
	THD shall be less than 5% at rated output. Each individual shall be limited to the percentage listed in table 1		Р	
	Even harmonics in these ranges shall be less than 25% of the lower odd harmonic limits listed		Р	
4.7	Power factor		Р	

Code: IEC61727_a / Effective Date: 18 Nov 2011

TRF No. IEC61727_2nd_a

Report No. 190226174GZU-004

Verdict

Ρ

Total Quality. Assured.

	Page 9 of 24 IEC 61727:2004	Report No. 1902261	74020-00
Clause	Requirement – Test	Result – Remark	Verdic
	The PV system shall have a lagging power factor greater than 0.9 when the output is greater than 50% of the rated inverter output power	(see appended table)	Р
	Specially designed systems that provide reactive power compensation may operate outside of the limit with utility approval		Р
5	Personnel safety and equipment protection		Р
	The PV system should operate safe and proper		Р
	The protection function may be provided as and internal or external device in the system		Р
	IEC60364-5-55 or national codes may be applicable		Р
5.1	Loss of Utility		Р
	to prevent islanding, a utility connected PV system shall cease to energize the utility system from a de- energized distribution line irrespective of connected loads or other generators within specified limits	Considered in IEC 62116	P
	A utility distribution line can become de-energized for several reasons. For example, a substation breaker opening due to a fault condition or the distribution line switched out during maintenance.		P
	If inverters (single or multiple) have DC-SELV input and have accumulated power below 1kW then no mechanical disconnect (relay) is required		N/A
5.2	Over / under voltage and frequency		Р
	Abnormal conditions can arise on the utility system that require a response from the connected photovoltaic system. This response is to ensure the safety of the utility maintenance personnel and the general public, as well as to avoid damage to connected equipment, including the photovoltaic system		P
5.2.1	Over / Under voltage		Р
	When the interface voltage deviates outside the conditions specified in table 2, the photovoltaic system shall cease to energize the utility distribution system. this applies to any phase of a multiphase system	(see appended table)	P
	All discussions regarding system voltage refer to the local nominal voltage		Р
5.2.2	Over / Under frequency		Р

Code: IEC61727_a / Effective Date: 18 Nov 2011

Total Quality. Assured.

199 - 1999 M	Page 10 of 24	Report No. 190226174	4GZU-00	
Clause	IEC 61727:2004 Requirement – Test	Result – Remark	Verdic	
	When the utility frequency deviates outside the specific conditions the photovoltaic system shall cease to energize the utility line.	(see appended table)	Р	
	When the utility frequency is outside the range of ± 1 Hz, the system shall cease to energize the utility line within 0.2 s.			
5.3	Islanding protection		Р	
	The PV system must cease to energize the utility line within 2 s of loss utility	Considered in IEC 62116	Р	
5.4	Response to Utility recovery		Р	
	Following an out-of-range utility condition that caused the photovoltaic system to cease energizing, the photovoltaic system shall not energize the utility line for 20 s to 5 min after the utility service voltage and frequency have recovered to within the specified ranges		Р	
5.5	Earthing		N/A	
	The utility interface equipment shall be earthed/grounded in accordance with IEC 60364-7- 712		N/A	
5.6	Short circuit protection			
	The photovoltaic system shall have short-circuit protection in accordance with IEC60364-7-712	This short-circuit protection will be considered at point of connection to the AC mains	N/A	
5.7	Isolation switching		N/A	
	A method of isolation and switching shall be provided in accordance with IEC 60364-7-712	Should consider in the end use.	N/A	

Code: IEC61727_a / Effective Date: 18 Nov 2011

Total Quality. Assured.

Page 11 of 24

Appendix 1: Test tables

4.4	DC injection			
Rated output I	Rated output load (W) 12000			
Rated output current (Arms) 17.4A/phase		17.4A/phase		
Measured DC current (A)		R: 9.2744mA		
		Y: 9.2780mA		
		B: 3.8022mA		
DC injection current (%)		R: 0.0486%		
		Y: 0.0486%		
		B: 0.0199%		
Limit: DC inject	Limit: DC injection current is not greater than 1 % of the rated inverter output current.			

4.3	TABLE: Voltage Fluctuations and Flicker				Р
Model	EVVO 10000TL3P (R phase)				
	dc (%)	Dmax (%)	Running		
Limit	3.3	4.0	Pst = 1.0	Plt =0.65	
Test value	1.99	3.30	0.17	0.15	
Model	EVVO 10000TL3P (Y	phase)			
	dc (%)	Dmax (%)	Running		
Limit	3.3	4.0	Pst = 1.0	Plt =0.65	
Test value	2.45	3.60	0.20	0.17	
Model	EVVO 10000TL3P (B phase)				
	dc (%)	Dmax (%)	Running		
Limit	3.3	4.0	Pst = 1.0	Plt =0.65	
Test value	1.97	3.50	0.21	0.19	
Model	EVVO 12000TL3P (R)	ohase)			
	dc (%)	Dmax (%)	Running		
Limit	3.3	4.0	Pst = 1.0	Plt =0.65	
Test value	0	3.94	0.36	0.25	
Model	EVVO 12000TL3P (Y	phase)			
	dc (%)	Dmax (%)	Running		
Limit	3.3	4.0	Pst = 1.0	Plt =0.65	
Test value	0	3.60	0.33	0.23	
Model	EVVO 12000TL3P (B	phase)			

Code: IEC61727_a / Effective Date: 18 Nov 2011

Page 12 of 24

Report No. 190226174GZU-004

Appendix 1: Test tables

	dc (%)	Dmax (%)	Running			
Limit	3.3	4.0	Pst = 1.0	Plt =0.65		
Test value	0	3.23	0.31	0.22		

4.6	Harmo	nics and wave form di	stortion (for EV	VO 4000TI	L3P)		Р	
	•	Watts		4.020kW				
		Vrms		230V				
		Arms			R: 5.82/	٩		
					Y: 5.834	4		
					B: 5.79	4		
		PF			0.9999			
		Frequency			50.0Hz			
Harmonics	S	Harmo	onic current %	of Fundam	nental	Harmonic		
		Phase R	Phase Y		Phase B	Limits (%)		
1 st				-				
2 nd		0.0789	0.0	841	0.1052	1.0%		
3 rd		0.3205	0.0	910	0.2538	4.0%		
4 th		0.0602	0.0	983	0.0677	1.0%		
5 th		0.1729	0.4	024	0.5451	4.0%		
6 th		0.0834	0.0	237	0.0963	1.0%		
7 th		0.2066	0.2	225	0.4200	0.4200 4.0%		
8 th		0.0984	0.0	263	0.1161	1.0%		
9 th		0.2451	0.0	583	0.2853	4.0%		
10 th		0.0815	0.0	168	0.0932	0.5%		
11 th		0.1144	0.2	193	0.3374			
12 th		0.0854	0.0	235	5 0.0752 0.5			
13 th		0.0270	0.3	510	0.3612	2.0%		
14 th		0.0764	0.0	263	0.1041	0.5%		
15 th		0.3260	0.1	0.4001 2		2.0%		
16 th		0.0997	0.0	224	0.0816	0.5%		
17 th		0.2413	0.2	324	0.4528	1.5%		

Code: IEC61727_a / Effective Date: 18 Nov 2011

Total Quality. Assured.

Page 13 of 24

Report No. 190226174GZU-004

Appendix 1: Test tables

18 th	0.0786	0.0	190	0.0888	0.5%	
19 th	0.2148	0.1	954	0.0409	1.5%	
20 th	0.0718	0.0	095	0.0740	0.5%	
21 st	0.3849	0.0	746	0.3325	1.5%	
22 nd	0.0644	0.02	288	0.0934	0.5%	
23 rd	0.3301	0.18	876	0.2818	0.6%	
24 th	0.0419	0.0	123	0.0550	0.5%	
25 th	0.2376	0.12	276	0.2450	0.6%	
26 th	0.0558	0.0	086	0.0561	0.5%	
27 th	0.2685	0.0	172	0.2794	0.6%	
28 th	0.0547	0.0	121	0.0619	0.5%	
29 th	0.1251	0.0	658	0.0646	0.6%	
30 th	0.0381	0.02	212	0.0521	0.5%	
31 st	0.0595	0.0	575	0.1058	0.6%	
32 nd	0.0316	0.0	052	0.0414	0.5%	
33 rd	0.1848	0.0	160	0.2050	0.6%	
Total THD	1.1296	0.8	049	1.3806	5%	
Model: EVVO	12000TL3P					
	Watts			11.993k	W	
	Vrms			230V		
	Arms		R: 17.37A			
			Y: 17.35A			
			B: 17.31A			
	PF		0.9999			
	Frequency		50.0Hz			
Harmonics	Harmon	ic current %	% of Fundamental Harmonic Current			
	Phase R	Phase Y	Phase B		Limits (%)	
1 st						
2 nd	0.1008	0.13	323	0.0600	1.0%	
3 rd	0.0240	0.2	725	0.2535	4.0%	
4 th	0.0548	0.0	890	0.0376	1.0%	
5 th	0.2397	0.24	469	0.1081	4.0%	

Code: IEC61727_a / Effective Date: 18 Nov 2011

Total Quality. Assured.

Page 14 of 24

Report No. 190226174GZU-004

Appendix 1: Test tables

6 th	0.0216	0.0267	0.0357	1.0%
7 th	0.6924	0.8889	0.7232	4.0%
8 th	0.0645	0.0654	0.0759	1.0%
9 th	0.1205	0.2624	0.1495	4.0%
10 th	0.0216	0.0595	0.0483	0.5%
11 th	0.1453	0.3188	0.1773	2.0%
12 th	0.0307	0.0743	0.0440	0.5%
13 th	0.0414	0.0751	0.1052	2.0%
14 th	0.0278	0.0811	0.0567	0.5%
15 th	0.0305	0.1040	0.1228	2.0%
16 th	0.0269	0.0874	0.0772	0.5%
17 th	0.3377	0.3071	0.2347	1.5%
18 th	0.0265	0.0458	0.0291	0.5%
19 th	0.2593	0.2939	0.2991	1.5%
20 th	0.0105	0.0252	0.0181	0.5%
21 st	0.0362	0.0474	0.0270	1.5%
22 nd	0.0164	0.0302	0.0270	0.5%
23 rd	0.1467	0.1781	0.1795	0.6%
24 th	0.0125	0.0068	0.0051	0.5%
25 th	0.1779	0.1845	0.2189	0.6%
26 th	0.0114	0.0030	0.0090	0.5%
27 th	0.0185	0.0388	0.0192	0.6%
28 th	0.0108	0.0059	0.0089	0.5%
29 th	0.1747	0.1330	0.1867	0.6%
30 th	0.0057	0.0026	0.0069	0.5%
31 st	0.1739	0.1500	0.1583	0.6%
32 nd	0.0117	0.0137	0.0060	0.5%
33 rd	0.0082	0.0289	0.0354	0.6%
Total THD	1.0550	1.2266	1.0656	5%

Code: IEC61727_a / Effective Date: 18 Nov 2011

Total Quality. Assured.

4.7

Model

Value (W)

Vrms (V)

Appendix 1: Test tables

TABLE: Power Factor

EVVO 4000TL3P Output Power (%) 70 50 60 80 90 100 **Output Power Test** 660.07 796.61 928.11 1064.44 1196.83 1332.96 668.05 805.09 939.03 1075.29 1209.25 1344.96 663.47 799.31 933.47 1067.18 1200.63 1335.69 230.34 230.35 230.31 230.41 230.38 230.43 230.33 230.34 230.40 230.43 230.48 230.45

		230.32	230.35	230.38	230.41	230.44	230.46		
Arms (A)		2.88	3.47	4.04	4.63	5.25	5.79		
		2.91	3.51	4.09	4.67	5.22	5.84		
		2.89	3.48	4.06	4.64	5.22	5.80		
Output Po	wer test	663.38	799.47	930.38	1066.44	1198.37	1333.61		
value (VA)		671.19	807.76	941.19	1077.02	1210.66	1346.12		
		666.27	801.72	935.33	1068.77	1201.85	1336.77		
Power fac agging	tor Limit	> 0.90	> 0.90	> 0.90	> 0.90	> 0.90	> 0.90		
Power fac	tor	0.9950	0.9964	0.9976	0.9981	0.9987	0.9990		
		0.9953	0.9967	0.9977	0.9984	0.9988	0.9991		
		0.9958	0.9970	0.9980	0.9985	0.9989	0.9992		
Model	EVVO 12	2000TL3P							
Output Po	wer (%)	50	60	70	80	90	100		
Output Po	wer Test	1993.84	2395.17	2789.39	3189.41	3583.18	3999.89		
Value (W)		2008.73	2409.45	2807.65	3205.89	3605.93	4018.25		
		1989.36	2391.03	2790.92	3188.47	3585.05	3997.21		
Vrms (V)		230.18	230.05	230.15	230.22	230.24	230.27		
		230.13	230.01	230.11	230.21	230.27	230.26		
		230.19	230.07	230.15	230.24	230.31	230.25		
Arms (A)		8.66	10.41	12.12	13.85	15.56	17.37		
		8.73	10.48	12.20	13.93	15.66	17.45		
		8.64	10.39	12.20	13.85	15.57	17.36		
Output Po	wer test	1993.85	2395.17	2789.39	3189.43	3583.18	3999.89		
value (VA)		2008.77	2409.47	2807.66	3205.95	3605.93	4018.28		

1989.43 Code: IEC61727_a / Effective Date: 18 Nov 2011

2391.08

2790.95

3188.56

3585.09

3997.26

TRF No. IEC61727_2nd_a

Page 15 of 24

Report No. 190226174GZU-004

Ρ

Page 16 of 24

Report No. 190226174GZU-004

Appendix 1: Test tables

Power factor Limit agging	> 0.90	> 0.90	> 0.90	> 0.90	> 0.90	> 0.90		
Power factor	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999		
	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999		
	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999		

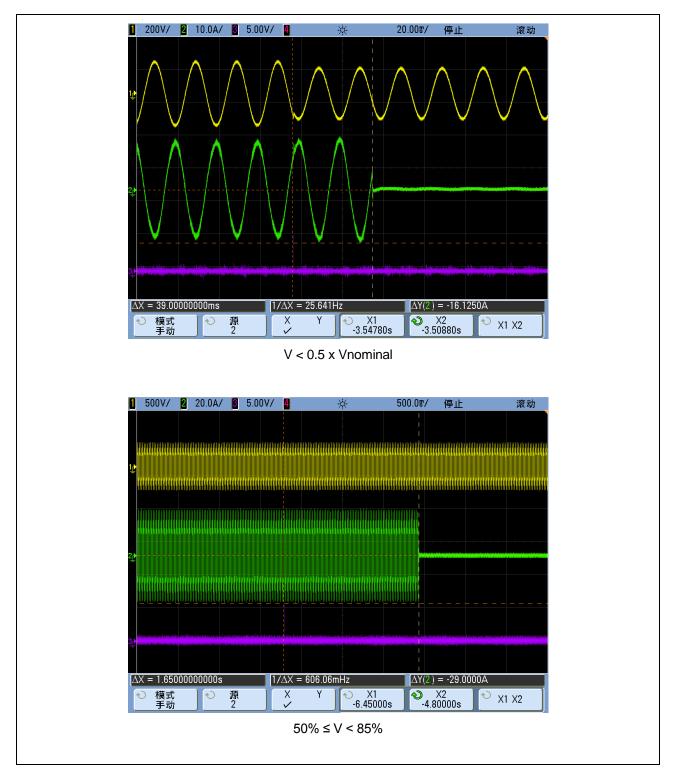
Code: IEC61727_a / Effective Date: 18 Nov 2011

Total Quality. Assured.

Page 17 of 24

Appendix 1: Test tables

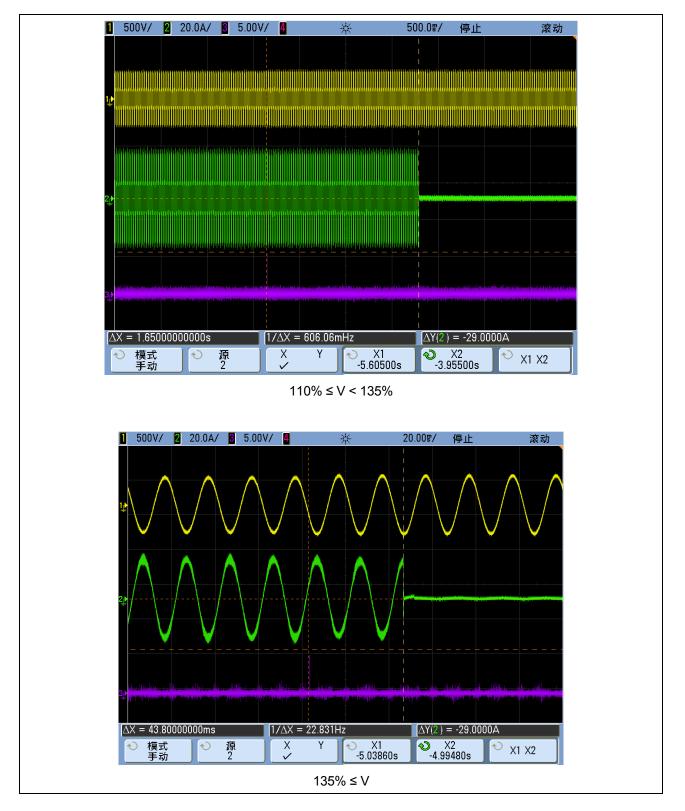
4. Test for Over/under voltage


Model: EVVO 1200	DOTL3P				
deviation	Voltage(s)	Measured Tripp Voltage	Maximum trip time	Measured trip time	Remark
V < 0.5 x	All phase:115V	114.26V	0,1s	38.6ms	Р
Vnominal	Phase R:115V	114.21V	0,1s	38.4ms	Р
	Phase Y:115V	114.26V	0,1s	39.0ms	Р
	Phase B:115V	114.51V	0,1s	38.5ms	Р
50% ≤ V < 85%	All phase:195.5V	194.72V	2s	1.65s	Р
	Phase R:195.5V	194.61V	2s	1.63s	Ρ
	Phase Y:195.5V	194.83V	2s	1.65s	Ρ
	Phase B:195.5V	194.72V	2s	1.65s	Р
85% ≤ V < 110%	<253V	250.29	Continuous operation		Р
110% ≤ V < 135%	All phase:254V	255.17V	2s	1.635s	Р
	Phase R:254V	255.19V	2s	1.650s	Р
	Phase Y:254V	255.34V	2s	1.640s	Р
	Phase B:254V	254.97V	2s	1.642s	Р
135% ≤ V	All phase:310.5V	311.7V	0,05s	40.0ms	Р
	Phase R: 310.5V	311.9V	0,05s	43.8ms	Р
	Phase Y:315.5V	311.8V	0,05s	32.0ms	Р
	Phase B:315.5V	311.7V	0,05s	35.6ms	Р

Code: IEC61727_a / Effective Date: 18 Nov 2011

Page 18 of 24

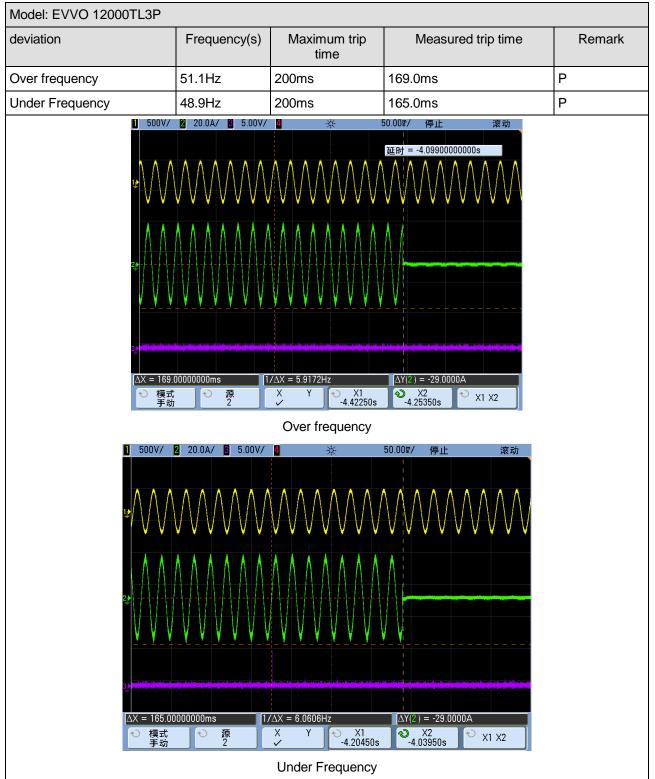
Appendix 1: Test tables


Code: IEC61727_a / Effective Date: 18 Nov 2011

Page 19 of 24

Report No. 190226174GZU-004

Appendix 1: Test tables

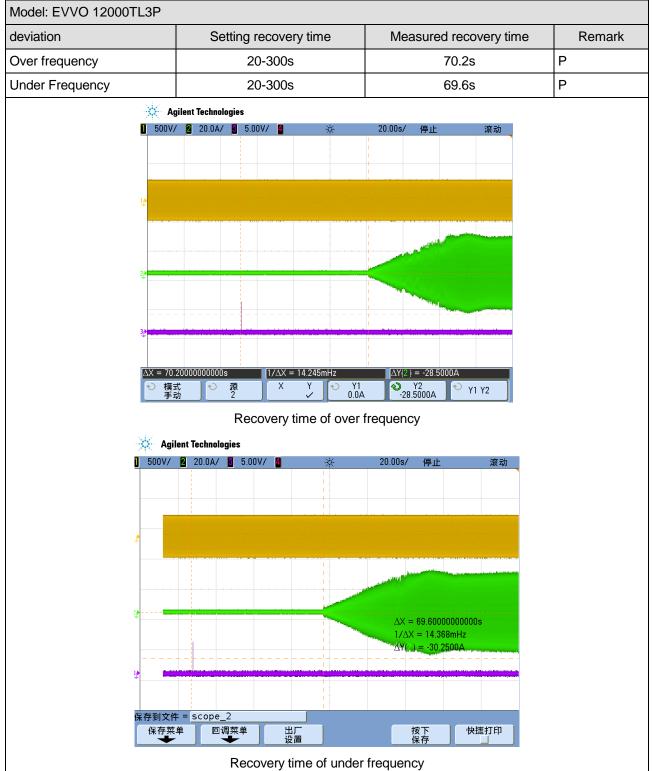

Code: IEC61727_a / Effective Date: 18 Nov 2011

Total Quality. Assured.

Page 20 of 24

Appendix 1: Test tables

5. Test for Over/under frequency

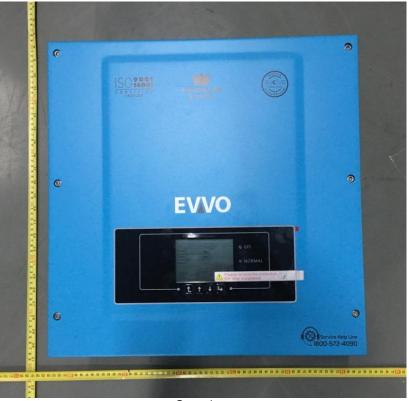


Code: IEC61727_a / Effective Date: 18 Nov 2011

Total Quality. Assured.

Appendix 1: Test tables

6. Test for Response to utility recovery


Code: IEC61727_a / Effective Date: 18 Nov 2011

Appendix 2: Photos

Page 22 of 24

Report No. 190226174GZU-004

Overview

Heatsink view

Code: IEC61727_a / Effective Date: 18 Nov 2011

Appendix 2: Photos

Page 23 of 24

Internal view for EVVO 12000TL3P、EVVO 10000TL3P、 EVVO 8000TL3P

Internal view for EVVO 3000TL3P, EVVO 4000TL3P, EVVO 4800TL3P, EVVO 5000TL3P, EVVO 6000TL3P

Code: IEC61727_a / Effective Date: 18 Nov 2011

TRF No. IEC61727_2nd_a

TRF Originator: Intertek

Appendix 2: Photos

Page 24 of 24

Report No. 190226174GZU-004

Input/output terminal view

Code: IEC61727_a / Effective Date: 18 Nov 2011